AAMI Consensus Report

End User Disclosures for
CPAP/BiPAP

AAMI CR506:2020/(R)2022
In this redline revision, a vertical line in the margin shows where the technical content is modified from the original.

Additions are in green text, deletions are in strikethrough red text.

End user disclosures for CPAP/BiPAP

Revisions are expected to be made to this document as the COVID-19 situation evolves. Please go to https://www.aami.org/covid_cr to find the most current version as well as past versions. This document is freely available and may be shared with all interested stakeholders. Contact celliot@aami.org with any comments or questions.

Approved 15 April 2020 and reaffirmed 6 October 2022 by AAMI

Abstract: Identifies high priority hazards and their causes to be considered in development and the information to be disclosed by emergency use CPAP and BiPAP therapy equipment (EUCP) manufacturers to the end user. These are based on the hazards identified in IEC 60601-1 and ISO 80601-2-70.

Keywords: COVID-19
AAMI Consensus Report

A Consensus Report (CR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) developed to provide concise, prompt and practical guidance on narrowly focused topics of high importance to the health technology community. A Consensus Report is intended to provide initial consensus guidance in response to an urgent/immediate need for guidance in the following instances:

- While more robust data/information develops on emergent areas
- When variation in the development, implementation or use of a product or process exists
- When existing standards or other documents require additional context/clarification

A Consensus Report is not subject to the same formal process as a standard and while similar in nature to a technical information report (TIR), a CR is based on the collective knowledge and experience of a selected group of stakeholders and has not undergone the wider reviews of a TIR or standard and offers an even greater response time.

CAUTION NOTICE: This AAMI CR may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.

All standards, technical information reports, consensus reports and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Comments on this document are invited and should be sent to AAMI, Attn: Standards Department, 901 N. Glebe Rd, Suite 300, Arlington, VA 22203.

Published by

AAMI
901 N. Glebe Rd., Suite 300
Arlington, VA 22203
www.aami.org

© 2020 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, visit the Copyright Clearance Center.

Printed in the United States of America

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Group representation</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1 Electrical Shock Hazard</td>
<td>1</td>
</tr>
<tr>
<td>2 Mechanical Hazards</td>
<td>2</td>
</tr>
<tr>
<td>3 Environmental Hazards</td>
<td>2</td>
</tr>
<tr>
<td>4 CO₂ Rebreathing</td>
<td>2</td>
</tr>
<tr>
<td>5 Reuse Hazards</td>
<td>3</td>
</tr>
<tr>
<td>6 Biocompatibility</td>
<td>3</td>
</tr>
<tr>
<td>7 Electromagnetic Compatibility (EMC)</td>
<td>3</td>
</tr>
<tr>
<td>8 Alarm System</td>
<td>3</td>
</tr>
<tr>
<td>9 Accuracy of controls and measurements</td>
<td>4</td>
</tr>
<tr>
<td>10 Accessories</td>
<td>4</td>
</tr>
<tr>
<td>11 Programmable Electrical Medical Systems</td>
<td>4</td>
</tr>
<tr>
<td>12 Risk Management Process</td>
<td>5</td>
</tr>
<tr>
<td>13 Other hazards</td>
<td>5</td>
</tr>
</tbody>
</table>
Task Group representation

Association for the Advancement of Medical Instrumentation

COVID-19 Response Team Members

This AAMI Consensus Report (CR) was developed by a task group under the auspices of the AAMI COVID-19 Response Team.

The **AAMI COVID-19 Response Team** had the following members:

Cochairs: Jennifer Danieley
David Feinstein
Julian Goldman
Sandy Weininger

Members: Simona Bancos, FDA/CDRH
Andrew Bath, ResMed Inc.
Brandon Blakely, FDA/CDRH
Brad Bonnette, ECRI Institute
Caitlin Brady, Intertek
David Busch, UT Southwestern Medical Center
Anthony Ciccarello, Philips
Steven Dain, University of Western Ontario
Rakhi Dalal, FDA/CDRH
Jennifer Danieley, FDA/CDRH
Andy Doering, Medtronic
Simon Dunham, Weill Cornell Medicine
David Feinstein, American Society of Anesthesiologists (ASA)
Bruce Friedman, GE Healthcare
Hamed Ghods, FDA/CDRH
Julian Goldman, Partners HealthCare System
Ralf Heesch, Draeger Medical Systems Inc.
Heidi Horn, Nuvolo Technologies
Fernando Isaza, Philips
Michael Jaffe, Cardiorespiratory Consulting LLC
Gardner Kimm, Medtronic Inc Campus
Robert Kopotic, Edwards Lifesciences
Hubertus Lasthaus, VitalAire Germany
Ed Madsen, Avanos Medical
Phoebe Mainland, Alfred Health
Madeleine Manousaridis, Standards Australia
Benoit Marchal, Air Liquide
Thomas Marmet, GE Healthcare
Debra Milamed, Harvard University
Cyndy Miller, Medtronic Inc Campus
Bryant Moeller, ResMed Inc.
Curtis Morgan, 3M Health Care
Akito Ohmura, Teikyo University-Mizonokuchi Hospital
David Osborn, Philips
John Stark, 3M Health Care
Robert Steurer, Steurer Consulting Group
Dongbo Wang, FDA/CDRH
Sandy Weininger, FDA/CDRH

NOTE—Participation by federal agency representatives in the development of this document does not constitute endorsement by the federal government or any of its agencies.
Acknowledgments

AAMI gratefully acknowledges the writing team members, Julian Goldman, Dave Osborn, Anthony Ciccarello and Sandy Weininger for their outstanding and expeditious work in preparing these drafts for committee review and approval.
End user disclosures for CPAP/BiPAP

Purpose

The goal of this document is to identify high priority hazards and their causes to be considered in development and the information to be disclosed by emergency use CPAP and BiPAP therapy equipment (EUCP) manufacturers to the end user. These are based on the hazards identified in IEC 60601-1\(^1\) and ISO 80601-2-70 \(^2\)

NOTE This document is intended to be used in conjunction with AAMI CR505:2020, Emergency use Emergency Use CPAP/BiPAP design guidance.

1 Electrical Shock Hazard

Purpose: to ensure adequate patient and operator safety in terms of shock (leakage current, dielectric strength, ground continuity).

Disclosures:

- List AC input power requirements of the EUCP (voltage, frequency, amperes).
- DC power input requirement, if applicable.
- Indicate the electrical classification of EUCP:
 - Class I (EUCP has a protective earth connection with a 3-wire power cord)
 - Class II (EURS does not have a protective earth ground but is double insulated with a 2-wire power cord)
 - Internally powered (powered by a rechargeable battery inside the EUCP or a rechargeable battery external to EUCP)

 NOTE An EUCP can have more than one classification e.g., Class II/externally powered.

- If the power supply connected to mains power is not medical grade (i.e., IEC 60601-1 compliant), describe the means used to reduce leakage currents to IEC 60601-1 limits (e.g. use of an isolation transformer, second permanently installed protective earth connection).
- If the power supply connected to mains power is Class I, add a warning:

\(^{1}\) IEC 60601-1, Medical electrical equipment – Part 1: General requirements for basic safety and essential performance

\(^{2}\) ISO 80601-2-70, Medical electrical equipment —Part 2-70: Particular requirements for basic safety and essential performance of sleep apnoea breathing therapy equipment
Warning: This EUCP relies on the integrity of the protective earth ground to reduce the risk of electrical shock. Check the integrity and verify the function of the protective earth ground of the supply mains receptacle prior to use.

- Describe the type of patient connection: basic, basic floating, cardiac floating (type B, BF or CF) and defibrillation-proof.

2 Mechanical Hazards

a) Purpose: to ensure that the EUCP can withstand mechanical stresses from being carried or wheeled while being transported indoors or outdoors.

Disclosures:

- Identify the mobility of the EUCP:
 - Transit operable: EUCP is intended to operate while being moved.
 - Portable: EUCP is intended to be carried (but not operating) from one location to another.
 - Mobile: EUCP is intended to be wheeled (but not operating) from one location to another.

b) Purpose: to ensure that the moving parts of the EUCP do not pose an unacceptable risk to the patient or operator.

Disclosures:

- If the EUCP has wheels, assess the stability and disclose the safe angle before tipping occurs.
- Identify any trapping zones (e.g. trapping fingers, hair, PPE) and how they are guarded.

3 Environmental Hazards

Purpose: to ensure that the EUCP can be stored and operated in its intended environment.

Disclosures:

- Indicate the temperature/humidity/altitude range over which the EUCP is intended to operate and meets its specifications.
- Indicate the intended range of conditions (temperature/humidity specifications) in which the EUCP can be stored.

4 CO₂ Rebreathing

Purpose: to reduce the risk of excessive carbon dioxide in the bloodstream.

Disclosures:

- Describe the means implemented to minimize the risk of rebreathing and to keep residual exhaled CO₂ to acceptable levels.
5 Reuse Hazards

Purpose: to reduce the risk of cross contamination.

Disclosures:

- Describe the cleaning and disinfection procedures needed between uses and between patients for both the EUCP and the accessories.
- Description of location and specifications of required EUCP particle filters and replacement intervals.

6 Biocompatibility

Purpose: to reduce the risk of biological reaction to foreign substances.

Disclosures:

- For the gas pathway, indicate if any biocompatibility evaluations were performed per ISO 18562 (series)\(^3\).
- For parts intended to touch the patient, indicate if any biocompatibility evaluations were performed per ISO 10993 (series)\(^4\).

7 Electromagnetic Compatibility (EMC)

Purpose: to ensure that the EUCP is adequately protected from electromagnetic emissions from other electrical sources (e.g. cell phones, ESD) and to ensure that the EUCP does not interfere with the operation of other nearby electronic medical devices.

Disclosures:

- Indicate if any EMC testing was performed and identify the standards (e.g., IEC 60601-1-2\(^5\)) to which the EUCP was evaluated.
- If EMC testing has not been performed, add a warning:

This ventilator has not been tested for electromagnetic compatibility (EMC). It may produce electromagnetic disturbances that will affect the performance of other equipment. It may fail to perform as expected in the presence of electromagnetic disturbances from other equipment.

8 Alarm System

Purpose: to reduce the risk to the patient by alerting the caregiver of a hazardous situation.

\(^3\) ISO 18562, *Biocompatibility evaluation of breathing gas pathways in healthcare applications*

\(^4\) ISO 10993, *Biological evaluation of medical devices*

Disclosures:

- Describe the functionality of the alarm system.
- List available alarm conditions, their relative priority and default alarm limits.
- Describe the default alarm settings (e.g. latched, not latched alarm signals, alarm condition disabled).
- Indicate the means by which the auditory alarm signal can be inactivated and for how long.

9 Accuracy of controls and measurements

Purpose: to reduce the risk of hazardous output from the EUCP to the patient.

Disclosures:

- List of therapy settings and monitored values that are displayed: e.g., pressure, respiratory rate.
- Describe how the displayed monitored values are determined.
- List the accuracy of therapy parameters.

10 Accessories

Purpose: to ensure the safe use of the EUCP with compatible accessories

Disclosures:

- List of recommended accessories and their replacement intervals e.g. tubing, patient interface, filters, replacement batteries.

11 Programmable Electrical Medical Systems

Purpose: to ensure that the software operates safely and as specified.

Disclosures:

- Indicate whether the software was developed under a controlled life cycle process (e.g., IEC 62304).
- List any known unresolved software anomalies and workarounds.
- Indicate whether the software is protected to prevent the ventilator from digital cyberattacks.
- List any known unresolved software anomalies that can lead to the compromise of sensitive information or that can affect communication security.
- Indicate: Due to the rapid development cycle for this emergency use device, all efforts were made to verify the software, but defects may still exist. The consequences of these defects are unknown and may pose a risk to the patient.

6 IEC 62304, Medical device software — Software life cycle processes
12 Risk Management Process

Purpose: to ensure risks were comprehensively identified and adequately managed.

Disclosures:

- Indicate whether the EUCP design has been developed using a risk management process (e.g., ISO 149717).

13 Other hazards

Purpose: to reduce the risk of thermal injury or other events.

Disclosures:

- If applicable, indicate the battery specifications including:
 - the type of battery and chemistry;
 - a description of the means to determine the status of the battery (e.g., charging, low battery indicator);
 - conformance to applicable standards (e.g., IEC 621338 for rechargeable batteries or IEC 60086-49 for non-rechargeable batteries).

- Indicate the ingress protection (IP) of the EUCP enclosure: IP 22 is recommended (protection against foreign objects ≥ 12.5 mm and against dripping (15° tilted) water).

- Indicate if the EUCP is suitable for use in an oxygen enriched environment > 25 % O\textsubscript{2} (are adequate protections in place to reduce risk of fire ignition).

- If the EUCP contains oxygen at pressures exceeding 5 bar, the protections taken to ensure that auto-ignition from adiabatic compression cannot occur (e.g., parts of the EUCP operating at pipeline pressure).

7 ISO 14971, Medical devices - Application of risk management to medical devices

8 IEC 62133, Secondary cells and batteries containing alkaline or other non-acid electrolytes – Safety requirements for portable sealed secondary cells, and for batteries made from them, for use in portable applications

9 IEC 60086-4, Primary batteries – Part 4: Safety of lithium batteries