Emergency use Ventilatory Assistance Helmet (VAH) design guidance

Revisions are expected to be made to this document as the COVID-19 situation evolves. Please go to https://www.aami.org/covid_cr to find the most current version as well as past versions. This document is freely available and may be shared with all interested stakeholders. Contact celliott@aami.org with any comments or questions.

Approved 16 July 2020 and reaffirmed 6 October 2022 by AAMI

Abstract: Provides targeted design constraints to enable rapid development of emergency use VAH equipment to treat patients with COVID-19 respiratory failure. This document is also intended to guide the review of an emergency use VAH by an authority having jurisdiction.

Keywords: COVID-19
AAMI Consensus Report

A Consensus Report (CR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) developed to provide concise, prompt and practical guidance on narrowly focused topics of high importance to the health technology community. A Consensus Report is intended to provide initial consensus guidance in response to an urgent/immediate need for guidance in the following instances:

- While more robust data/information develops on emergent areas
- When variation in the development, implementation or use of a product or process exists
- When existing standards or other documents require additional context/clarification

A Consensus Report is not subject to the same formal process as a standard and while similar in nature to a technical information report (TIR), a CR is based on the collective knowledge and experience of a selected group of stakeholders and has not undergone the wider reviews of a TIR or standard and offers an even greater response time.

CAUTION NOTICE: This AAMI CR may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.

All standards, technical information reports, consensus reports and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Comments on this document are invited and should be sent to AAMI, Attn: Standards Department, 901 N. Glebe Rd, Suite 300, Arlington, VA 22203.

Published by

AAMI
901 N. Glebe Rd., Suite 300
Arlington, VA 22203
www.aami.org

© 2020 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, visit the Copyright Clearance Center.

Printed in the United States of America

ISBN 978-1-57020-761-7
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Group representation</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Connections and ports</td>
<td>2</td>
</tr>
<tr>
<td>Working pressure</td>
<td>2</td>
</tr>
<tr>
<td>Filtration</td>
<td>3</td>
</tr>
<tr>
<td>Access to patient for airway management</td>
<td>3</td>
</tr>
<tr>
<td>Resistance to flow (pressure drop)</td>
<td>3</td>
</tr>
<tr>
<td>Breathing during SINGLE FAULT CONDITION</td>
<td>3</td>
</tr>
<tr>
<td>Protection against rebreathing</td>
<td>3</td>
</tr>
<tr>
<td>Constructional requirements</td>
<td>4</td>
</tr>
<tr>
<td>Biocompatibility</td>
<td>4</td>
</tr>
<tr>
<td>Reprocessing VAH</td>
<td>4</td>
</tr>
<tr>
<td>Noise</td>
<td>5</td>
</tr>
<tr>
<td>Oxygen enriched environment</td>
<td>5</td>
</tr>
</tbody>
</table>
Task Group representation

Association for the Advancement of Medical Instrumentation

COVID-19 Response Team Members

This AAMI Consensus Report (CR) was developed by a task group under the auspices of the AAMI COVID-19 Response Team.

The AAMI COVID-19 Response Team had the following members:

Cochairs: Jennifer Danieley
David Feinstein
Julian Goldman
Sandy Weininger

Members: Simona Bancos, FDA/CDRH
Andrew Bath, ResMed Inc.
Brandon Blakely, FDA/CDRH
Brad Bonnette, ECRI Institute
Caitlin Brady, Intertek
David Busch, UT Southwestern Medical Center
Anthony Ciccarello, Philips
Steven Dain, University of Western Ontario
Rakhi Dalal, FDA/CDRH
Jennifer Danieley, FDA/CDRH
Andy Doering, Medtronic
Simon Dunham, Weill Cornell Medicine
David Feinstein, American Society of Anesthesiologists (ASA)
Bruce Friedman, GE Healthcare
Hamed Ghods, FDA/CDRH
Julian Goldman, Partners HealthCare System
Ralf Heesch, Draeger Medical Systems Inc.
Heidi Horn, Nuvolo Technologies
Fernando Isaza, Philips
Michael Jaffe, Cardiorespiratory Consulting LLC
Gardner Kimm, Medtronic Inc Campus
Robert Kopotic, Edwards Lifesciences
Hubertus Lasthaus, VitalAire Germany
Ed Madsen, Avanos Medical
Phoebe Mainland, Alfred Health
Madeleine Manousaridis, Standards Australia
Benoit Marchal, Air Liquide
Thomas Marmet, GE Healthcare
Debra Milamed, Harvard University
Cyndy Miller, Medtronic Inc Campus
Bryant Moeller, ResMed Inc.
Curtis Morgan, 3M Health Care
Akito Ohmura, Teikyo University-Miznochuki Hospital
David Osborn, Philips
John Stark, 3M Health Care
Robert Steurer, Steurer Consulting Group
Dongbo Wang, FDA/CDRH
Sandy Weininger, FDA/CDRH
Ayub Yancheshmeh, CSA Group

NOTE—Participation by federal agency representatives in the development of this document does not constitute endorsement by the federal government or any of its agencies.
Acknowledgments

AAMI gratefully acknowledges the writing team members, Prepared by Brad Bonnette, Anthony Ciccarello, Rakhi Dalal, Julian Goldman, Barry Hunt, Bob Kopotic, Ken LeDez, Cyndy Miller, Dave Osborn and Sandy Weininger for their outstanding and expeditious work in preparing these drafts for committee review and approval.
Emergency use Ventilatory Assistance Helmet (VAH) design guidance

Purpose

This document provides targeted design constraints to enable rapid development of emergency use VAH equipment to treat patients with COVID-19 respiratory failure. This document is also intended to guide the review of emergency use VAH by an authority having jurisdiction.

It is recognized that the surge in COVID-19 is requiring extraordinary measures to provide ventilatory support to keep pace with clinical need. In the very early stage of acute respiratory failure, management of mild respiratory failure, or the weaning phase from respiratory failure, spontaneous breathing with the assistance from a CPAP, BiPAP or Respiratory High Flow device and as well be the environment of supplemental oxygen may be sufficient. VAH equipment can provide the patient interface for delivery from a CPAP or as needed BiPAP device and as well be the environment of supplemental oxygen.

A global community of clinicians, engineers, manufacturers, regulators, and others are responding to this need by designing and producing, inexpensive, and often open-source, equipment of varying complexity and capabilities for rapid deployment. This document identifies clinical, engineering and test requirements appropriate to support safe operation of VAH equipment.

Introduction

Due to similarities, the requirements outlined in this paper are modeled on ISO 17510, with modifications to reflect differences in VAH geometry and function (e.g., containing a large volume of gas relative to tidal volume and being of flexible materials) that are also reflected herein. We presume usage in established healthcare facilities (e.g., hospitals, assisted living facilities, nursing homes) as well as spaces converted for the care of large numbers of patients with COVID-19 (e.g., convention centers, university dormitories, motels). This document presumes that the operators of the VAH are trained professional healthcare providers.

The VAH is expected to be normally operated at pressures below 25 cm H₂O, with transient excursions above this, for example due to patient coughing. Pressure safety relief and device integrity are therefore specified to be above the expected working pressure.

Leakage can be important during treatment of COVID-19 patients for containment of pathogens, and protection of health care providers and other patients, and thus is included below. Leakage is not typically adverse for the patient being treated and is generally not of concern for non-infectious patients.

Terms and definitions

exhaust port

2 ISO 17510 Medical devices — Sleep apnoea breathing therapy — Masks and application accessories
port through which excess and/or waste gas(es) is (are) discharged either to atmosphere or to anesthetic
gas scavenging system

[SOURCE: ISO 4135:2001,4.2.1.6]

maximum working pressure

highest pressure which can be attained at the patient connection port during the inspiratory phase with the
ventilator operating normally

[SOURCE: ISO 4135:2001,3.3.5]

normal condition

condition in which all means of protection are intact

single fault condition

condition in which there is a fault of a single protection (but not a reinforced protection) or of a single
component or a device

Note 1 to entry: If a single fault condition results in one or more other fault conditions, all are considered as
one single fault condition.

Connections and ports

There shall be at least two ports:

a) There shall be at least one patient-connection port suitable for BREATHING GAS inflow.
b) There shall be at least one port that functions as an EXHAUST PORT.

VAH gas port(s) shall be a 22 mm male adapter conforming with ISO 5356-1:2015.

If provided, auxiliary ports shall be provided with a means to provide a gas-tight seal at the maximum
operating pressure.

If provided, the inlet connection for fresh gas shall be the nipple of EN 13544-2:2002+AMD1:2009, Figure
1, with a maximum internal bore diameter of 2.95 mm; or a male 9/16-18 UNF-2A-RH fitting

The nipple of EN 13544-2+AMD1:2009 may be connected to this male 9/16-18 UNF-980 2A-RH fitting
without the use of a tool.

The gas supply hoses shall remain positioned when pulled with a force of (40 ±5) N at any angle within a
cone of 45° to the major axis of the connection.

Working pressure

The VAH shall accommodate a MAXIMUM WORKING PRESSURE of at least 25 cm H2O.

The MAXIMUM LIMITED PRESSURE shall not exceed 35cm H2O. Pressure release means may be part of the
VAH or may be provided and/or recommended elsewhere in the circuit. If incorporated in VAH, it may be
delivered in a configuration in which the health care provider may disable the pressure release means, for
example to prevent leakage of pathogens in the health care environment.
Filtration

Means shall be provided to attach a viral protection device so that all exhaust gas is filtered prior to entering the room in order to prevent contamination to the environment. The filter should not be easily dislodged during normal operation and in all anticipated patient positions. The viral filter shall remain positioned when pulled with a force of (40 ±5) N at any angle within a cone of 45° to the major axis of the filter.

Access to patient for airway management

Means shall be provided for the operator to remove the VAH or components of the VAH to provide emergency access the patient's airway in less than 15 s.

All components of the VAH shall be capable of removal from the patient in less than 30 s by healthcare professionals.

Resistance to flow (pressure drop)

The resistance to flow (pressure drop) across the VAH shall be measured at flowrates of 50 l/min and 100 l/min.

ISO 17510 Annex C provides guidance for measuring the resistance to flow (pressure drop).

Inspiratory pressure drop should account for all elements of the inspiratory limb between the patient connection port and the patient (e.g., connectors, adaptors).

Expiratory resistance should account for all elements of the expiratory limb (e.g., PEEP valve, filters and any other expiratory elements).

Breathing during SINGLE FAULT CONDITION

If an anti-asphyxia valve is provided, the open-to-atmosphere pressure shall be less than the minimum rated pressure of the VAH.

Means shall be provided to limit inspiratory and expiratory resistance in SINGLE FAULT CONDITION.

The following test methods in ISO 17510 provide guidance on evaluating an anti-asphyxia valve:

a) Annex D: ANTI-ASPHYXIA VALVE pressure testing
b) Annex E: Determination of the inspiratory and expiratory resistance under SINGLE FAULT CONDITION

Protection against rebreathing

Means shall be implemented to minimize the risk of rebreathing and to keep residual exhaled CO₂ to acceptable levels. This may be integral to the VAH or provided by other means. This requirement may be fulfilled by continual monitoring by a CO₂ monitor with alarm capability. If provided, the CO₂ monitor shall be ISO 80601-2-55 compliant.

The manufacturer shall disclose the minimum fresh gas flowrate required to minimize rebreathing. This requirement may be fulfilled by a gas flow monitor with alarm capability.

The following test methods are based on ISO 17510: The following parts of ISO 17510 provide guidance on evaluating protection against rebreathing:

a) Clause 5.3: Protection against rebreathing
b) Annex F: Carbon Dioxide Rebreathing

7.1 Rebreathing in normal condition protection

Under normal condition, the relative CO₂ increase shall not exceed 20 % when tested at recommended flow rates.

7.2 Rebreathing in single fault condition protection

VAH shall be designed to minimize rebreathing during SINGLE FAULT CONDITION. Under SINGLE FAULT CONDITION, the relative CO₂ increase shall not exceed 60 % when tested with blockage of an exhaust port.

Constructional requirements

VAH shall be constructed to maintain integrity up to the maximum rated working pressure for at least 72 hours at room temperature. Maintaining integrity includes no separation of seals or parts, and no unintentional leaks from unused ports.

VAH neck seal should be constructed to prevent significant leakage up to the maximum rated working pressure.

VAH shall include means for securing the VAH in place at pressures up to the maximum rated working pressure, for example under-arm straps and/or anchor locations on a bed. If underarm straps are provided, care should be taken to maintain skin integrity. Straps will be compatible with skin contact where in contact with the patient, and provide padding and/or means for ensuring padding remains in place during therapy.

Biocompatibility

9.1 General

When possible, efforts should be taken to use materials which have a long history of safe use in currently marketed medical devices. Care is needed to ensure that gas pathways are free of residual foreign material before use (e.g., oil, particles, volatile organic compounds, mold release agents). Care is needed to ensure that gas pathways do not contain toxic compounds (e.g., formaldehyde), and do not release noxious gases (e.g., ozone, carbon monoxide) and fumes.

9.2 Gas Pathways

Test methods for evaluating biocompatibility of gas pathways are found in ISO 18562 (series)³.

9.3 VAH components that are likely to contact the patient's skin

Test methods to evaluate biocompatibility of parts in patient contact are found in ISO 10993 (series)⁴.

Reprocessing VAH

Instructions shall identify portions of the VAH or its components that are intended for cleaning, disinfecting and/or reprocessing. Adequate instructions shall be provided to the healthcare professionals on the

³ ISO 18562 (series) Biocompatibility evaluation of breathing gas pathways in healthcare applications
⁴ ISO 10993 (series) Biological evaluation of medical devices
disassembly and/or re-assembly for the purpose of cleaning, disinfecting and/or reprocessing the device.

Indicate the care needed to ensure that the functionality of the VAH is maintained.

Consider the number of times that the VAH can be re-used.

Noise

Manufactures should disclose in dBA the acoustic noise level measured at the minimum required fresh gas flowrate and if necessary, the means of hearing protection. A recommended test method may be found in Annex G of ISO 17510. For VAH, the test method can be modified to move the positions of the microphones to inside the VAH.

Oxygen enriched environment

11.1 Electronic devices

All electronic devices operated within the VAH shall be compatible for use in an oxygen enriched environment in order to reduce the risk of ignition in the event of a SINGLE FAULT CONDITION.

NFPA 99\(^5\) clause 14.2.9.3.17.4 provides the requirements for patient use devices.

IEC 60601-1\(^6\) clause 11.2.2 provides requirements for the design of medical devices used in an oxygen enriched environment

11.2 Lubricants

Any lotions, salves, dressings, lubricants and cleaning agents used in an oxygen enriched environment shall not be petroleum or oil based. These include patient use and those used to lubricate fittings. If alcohol or flammable cleaning or disinfection agents are used, ensure that they have completely evaporated prior to use.

\(^5\) NFPA 99 Health Care Facilities Code

\(^6\) IEC 60601-1 Medical electrical equipment – Part 1: General requirements for basic safety and essential performance